A non-commutative spectral theorem
نویسندگان
چکیده
منابع مشابه
A Non-commutative Bertini Theorem
We prove a version of the classical ‘generic smoothness’ theorem with smooth varieties replaced by non-commutative resolutions of singular varieties. This in particular implies a non-commutative version of the Bertini theorem.
متن کاملCommutative Spectral Triples & The Spectral Reconstruction Theorem A Master
Given a unital and commutative algebra A associated to a spectral triple, we show how a differentiable structure is constructed on the spectrum of such an algebra whenever the spectral triple satisfies eight so-called “axioms”, in such a way that A ∼= C∞(M). This construction is the celebrated “reconstruction theorem” of Alain Connes [14], [21]. We discuss two spin manifolds, the circle and the...
متن کاملA non-commutative Lévy-Cramér continuity theorem
The classical Lévy-Cramér continuity theorem asserts that the convergence of the characteristic functions implies the weak convergence of the corresponding probability measures. We extend this result to the setting of non-commutative probability theory and discuss some applications. ∗CNRS, Université de Provence, Université de la Méditerranée, Université du Sud Toulon-Var. 2 V. Jakšić, Y. Pautr...
متن کاملA note on spectral mapping theorem
This paper aims to present the well-known spectral mapping theorem for multi-variable functions.
متن کاملSpectral Zeta Functions in Non-Commutative Spacetimes
Formulas for the most general case of the zeta function associated to a quadratic+linear+constant form (in Z) are given. As examples, the spectral zeta functions ζα(s) corresponding to bosonic (α = 2) and to fermionic (α = 3) quantum fields living on a noncommutative, partially toroidal spacetime are investigated. Simple poles show up at s = 0, as well as in other places (simple or double, depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1978
ISSN: 0024-3795
DOI: 10.1016/0024-3795(78)90043-5